1.1 什么是HADOOP
1.HADOOP是apache旗下的一套开源软件平台
2.HADOOP提供的功能:利用服务器集群,根据用户的自定义业务逻辑,对海量数据进行分布式处理
3.HADOOP的核心组件有
A.HDFS(分布式文件系统)
B.YARN(运算资源调度系统)
C.MAPREDUCE(分布式运算编程框架)
4.广义上来说,HADOOP通常是指一个更广泛的概念——HADOOP生态圈
1.2 HADOOP产生背景
1.HADOOP最早起源于Nutch。Nutch的设计目标是构建一个大型的全网搜索引擎,包括网页抓取、索引、查询等功能,但随着抓取网页数量的增加,遇到了严重的可扩展性问题——如何解决数十亿网页的存储和索引问题。
2.2003年、2004年谷歌发表的两篇论文为该问题提供了可行的解决方案。
——分布式文件系统(GFS),可用于处理海量网页的存储
——分布式计算框架MAPREDUCE,可用于处理海量网页的索引计算问题。
3.Nutch的开发人员完成了相应的开源实现HDFS和MAPREDUCE,并从Nutch中剥离成为独立项目HADOOP,到2008年1月,HADOOP成为Apache顶级项目,迎来了它的快速发展期。
1.3 HADOOP在大数据、云计算中的位置和关系
1.云计算是分布式计算、并行计算、网格计算、多核计算、网络存储、虚拟化、负载均衡等传统计算机技术和互联网技术融合发展的产物。借助IaaS(基础设施即服务)、PaaS(平台即服务)、SaaS(软件即服务)等业务模式,把强大的计算能力提供给终端用户。
2.现阶段,云计算的两大底层支撑技术为“虚拟化”和“大数据技术”
3.而HADOOP则是云计算的PaaS层的解决方案之一,并不等同于PaaS,更不等同于云计算本身。
重点组件:
HDFS:分布式文件系统
MAPREDUCE:分布式运算程序开发框架
HIVE:基于大数据技术(文件系统+运算框架)的SQL数据仓库工具
HBASE:基于HADOOP的分布式海量数据库
ZOOKEEPER:分布式协调服务基础组件
Mahout:基于mapreduce/spark/flink等分布式运算框架的机器学习算法库
Oozie:工作流调度框架
Sqoop:数据导入导出工具
Flume:日志数据采集框架
数据处理流程
1)数据采集:定制开发采集程序,或使用开源框架FLUME
2)数据预处理:定制开发mapreduce程序运行于hadoop集群
3)数据仓库技术:基于hadoop之上的Hive
4)数据导出:基于hadoop的sqoop数据导入导出工具
5)数据可视化:定制开发web程序或使用kettle等产品
6)整个过程的流程调度:hadoop生态圈中的oozie工具或其他类似开源产品
hadoop集群搭建
HADOOP集群具体来说包含两个集群:HDFS集群和YARN集群,两者逻辑上分离,但物理上常在一起
HDFS集群:
负责海量数据的存储,集群中的角色主要有 NameNode / DataNode
YARN集群:
负责海量数据运算时的资源调度,集群中的角色主要有 ResourceManager /NodeManager
以5个节点为例
hdp-node-01 NameNode SecondaryNameNode
hdp-node-02 ResourceManager
hdp-node-03 DataNode NodeManager
hdp-node-04 DataNode NodeManager
hdp-node-05 DataNode NodeManager
先添加HADOOP用户
为HADOOP用户分配sudoer权限
同步时间
设置主机名
hdp-node-01
hdp-node-02
hdp-node-03
配置内网域名映射:
192.168.33.101 hdp-node-01
192.168.33.102 hdp-node-02
192.168.33.103 hdp-node-03
配置ssh免密登陆
配置防火墙
安装jdk
上传jdk安装包
规划安装目录 /home/hadoop/apps/jdk_1.7.65
解压安装包
配置环境变量 /etc/profile
传HADOOP安装包
规划安装目录 /home/hadoop/apps/hadoop-2.6.1
解压安装包
修改配置文件 $HADOOP_HOME/etc/hadoop/
1 | vi hadoop-env.sh |
启动集群
初始化HDFS
bin/hadoop namenode -format
启动HDFS
sbin/start-dfs.sh
启动YARN
sbin/start-yarn.sh
上传文件到HDFS
从本地上传一个文本文件到hdfs的/wordcount/input目录下
[HADOOP@hdp-node-01 ~]$ HADOOP fs -mkdir -p /wordcount/input
[HADOOP@hdp-node-01 ~]$ HADOOP fs -put /home/HADOOP/somewords.txt /wordcount/input
运行一个mapreduce程序
在HADOOP安装目录下,运行一个示例mr程序
cd $HADOOP_HOME/share/hadoop/mapreduce/
hadoop jar mapredcue-example-2.6.1.jar wordcount /wordcount/input /wordcount/output
HDFS使用
查看集群状态
命令: hdfs dfsadmin –report
也可打开web控制台查看HDFS集群信息,在浏览器打开http://hdp-node-01:50070/
传文件到HDFS
查看HDFS中的目录信息
命令: hadoop fs –ls /
上传文件
命令: hadoop fs -put ./ scala-2.10.6.tgz to /
从HDFS下载文件
命令: hadoop fs -get /yarn-site.xml
MR使用
mapreduce是hadoop中的分布式运算编程框架,只要按照其编程规范,只需要编写少量的业务逻辑代码即可实现一个强大的海量数据并发处理程序
mapreduce实现思路
Map阶段:
a)从HDFS的源数据文件中逐行读取数据
b)将每一行数据切分出单词
c)为每一个单词构造一个键值对(单词,1)
d)将键值对发送给reduce
Reduce阶段:
a)接收map阶段输出的单词键值对
b)将相同单词的键值对汇聚成一组
c)对每一组,遍历组中的所有“值”,累加求和,即得到每一个单词的总次数
d)将(单词,总次数)输出到HDFS的文件中
(1)定义一个mapper类
//首先要定义四个泛型的类型
//keyin: LongWritable valuein: Text
//keyout: Text valueout:IntWritable
1 | public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{ |
(2)定义一个reducer类
//生命周期:框架每传递进来一个kv 组,reduce方法被调用一次1
2
3
4
5
6
7
8
9
10
11
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
//定义一个计数器
int count = 0;
//遍历这一组kv的所有v,累加到count中
for(IntWritable value:values){
count += value.get();
}
context.write(key, new IntWritable(count));
}
}
(3)定义一个主类,用来描述job并提交job
1 |
|
程序打jar包上传到集群
1.将程序打包
2.准备输入数据1
2
3
4
5
6
7
8
vi /home/hadoop/test.txt
Hello tom
Hello jim
Hello ketty
Hello world
Ketty tom
在hdfs上创建输入数据文件夹:1
2
3hadoop fs mkdir -p /wordcount/input
将words.txt上传到hdfs上
hadoop fs –put /home/hadoop/words.txt /wordcount/input
4.使用命令启动执行wordcount程序jar包
$ hadoop jar wordcount.jar cn.demo.bigdata.test.WordCountDriver /wordcount/input /wordcount/out
$ hadoop fs –cat /wordcount/out/part-r-00000